

pecification

chnical

O3-B4 Ozone Sensor 4-Electrode

Figure 1 03-B4 Schematic Diagram

PATENTED

< 13

Top View	Bottom View Side View	
PERFORMANCE		
Sensitivity	nA/ppm at 100ppb O ₃	-250 to -550
Response time	t ₉₀ (s) from zero to 100ppb	< 15
Zero current	nA in zero air at 20°C	0 to 120
Noise*	±2 standard deviations (ppb equivalent)	4
Range	ppm O ₃ limit of performance warranty	5
Linearity	ppb error at full scale, linear at zero and 2ppm O ₃	0 to 200
Overgas limit	maximum ppm for stable response to gas pulse	10
* Tested with Alphaser	se ISB low noise circuit	
LIFETIME		
Zero drift	ppb equivalent change/year in lab air	0 to 50
Sensitivity drift	% change/year in lab air, monthly test	-20 to -35
Operating life	months until 5 <mark>0% original si</mark> gnal (12 month warranted)	> 18
ENVIRONMENTAL		
Sensitivity @ -20°C	(% output @ -20°C/output @ 20°C) @ 500ppb O	

ENVIRONMENTAL Sensitivity @ -20°C (% output @ -20°C/output @ 20°C) @ 500p Sensitivity @ 50°C (% output @ 50°C/output @ 20°C) @ 500p Zero @ -20°C nA change from 20°C	opb O ₃ -120 to -30
Zero @ 50°C nA change from 20°C CROSS SENSITIVITY H ₂ S sensitivity % measured gas @ 5ppm H ₂ S	800 to 1500

H ₂ S	sensitivity	% measured gas @	5ppm	H ₂ S	< 90
NO_2	sensitivity	% measured gas @	5ppm	NO_2	60 to 120
Cl ₂	sensitivity	% measured gas @	10ppm	Cl ₂	< 50
NŌ	sensitivity	% measured gas @	1ppm	NŌ	< 4
SO_2	sensitivity	% measured gas @	5ppm	SO ₂	< -5
CO	sensitivity	% measured gas @	10ppm	CO	< 0.1
H_2	sensitivity	% measured gas @	100ppm	H_2	< 1
C_2H_2	sensitivity	% measured gas @	400ppm	C_2H_4	< 0.1
	sensitivity	% measured gas @		$N\bar{H}_3$	< 1
CO ₂	sensitivity	% measured gas @	5%	CO ₂	< 0.1

KEY SPECIFICATIONS		
Temperature range	°C	-20 to +50
Pressure range	kPa	80 to 120
Humidity range	% rh non-condensing	15 to 85
Flow rate	minimum sccm during calibration	500 (0.5L/m)

0 Bias voltage Storage period months @ 3 to 20°C (stored in sealed pot) Load resistor Ω (ISB circuit is recommended)) 33 to 100

Weight q 深圳市新世联科技有限公司

邮编: 518031 地址:深圳市深南中路2066号华能大厦712室

传真: 0755-83680866 电话: 0755-83680810 83680820 83680830 83680860 邮箱: sales@apollounion.com

网址: www.apollounion.com

oecification

O3-B4 Performance Data

Figure 2 Sensitiivity Temperature Dependence

Figure 2 shows the temperature dependence of sensitivity at 100ppb O₃.

This data is taken from a typical batch of sensors.

Figure 3 Zero Temperature Dependence (corrected)

Figure 3 shows the variation in zero output of the working electrode caused by changes in temperature, expressed as nA.

This data is taken from a typical batch of sensors.

Contact Alphasense for futher information on zero current correction.

Figure 4 Linearity to 200ppb O,

Figure 4 shows response to 200ppb O₃.

Use of Alphasense ISB circuit reduces noise to 4ppb, with the opportunity of digital smooting to reduce noise even further

Figure 5 Effect of Humidity on Sensor Ouput (1 mV = 0.8 ppb)

Humidity shifts the baseline but does not change the sensitivity.

The repeatability of the zero shift means that humidity correction can be achieved in software.

深圳市新世联科技有限公司

地址: 深圳市深南中路2066号华能大厦712室

电话: 0755-83680810 83680820 83680830 83680860

网址: www.apollounion.com

邮编: 518031

传真: 0755-83680866

邮箱: sales@apollounion.com